
Modelling transport in submicron structures using the relaxation time Boltzmann equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys.: Condens. Matter 3 9447

(http://iopscience.iop.org/0953-8984/3/47/016)

Download details:

IP Address: 171.66.16.159

The article was downloaded on 12/05/2010 at 10:51

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/3/47
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys: Condens. Matter 3 (1991) 9447-9458 Printed in the UK 

Modelling transport in submicron structures using the 
relaxation time Boltzmann equation 
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Received 21 May 1991, in final form 19 August 1991 

AbslmcL W e  present a systematic evaluation of lransport properties of semiconducling 
submicron s tmcl~res  as predicted by computer shulations based on the Bolmann 
equation. The influence of variations in the relaxation time of lhe collision pronrr  
and the geometry of a model n+ nn+ diode are studied. Both ballistic and non-ballistic 
situations are considered and compared to approximating moment models. Already small 
ballistic effects, showing up as non-uniform features in the high velocity behaviour of 
the distribution funclion, cause considerable error in the moment model predictions for 
the I-V charact&tics. 

1. Introduction 

2ansport properties of semiconducting submicron structures have received increasing 
attention over the last few years. New phenomena come to dominate these properties 
as sizes are reduced further and high mobility materials become available for future 
device applications [l-71. Far from equilibrium effects, e.g. hot and ballistic electron 
transport as well as large gradients in the electric field and the electron density, 
become more important. vpicaliy, these effects are dominant in small regions of 
the structures, whereas in other regions near equilibrium conditions are observed. 
A wide range of relevant typical scales is found simultaneously in predominantly 
ballistic situations, i.e. both rapid and slow variations in the distribution function are 
observed in different regions of the devices and different velocity regions. By studying 
the Boltzmann equation, in the relaxation time representation, we show how ballistic 
effects depend on the relaxation time and the geometry parameters of a model n+nn+- 
diode. Our calculations directly clarify the failure of lower order moment equation 
models for predominantly ballistic transport conditions [6,7]. In these models one 
needs to truncate the hierarchy of moment equations by making an assumption on 
the form of the distribution function, which is usually of ‘Maxwellian’ type [4,5,71. 
The actual distribution function found in direct evaluation of the Boltzmann equation 
greatly differs from this assumed reference form in the ballistic domain. In the non- 
ballistic (‘diffusive’) regime the essential features of the distribution function can quite 
well be captured with a small number of typical scales, e.g. based upon the local ‘drift 
velocity’ and ‘electron temperature’ only. The assumed ‘Maxwellian’ form for the 
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distribution function resembles the actual distribution function to a greater extent 
and the corresponding model predictions agree much better with the Boltzmann 
results. Through the use of a new numerical integration method for the Boltzmann 
equation, based on the method of characteristics, and a proper evaluation of the 
singularities present for small velodties/electric fields, precise evaluation has become 
possible for a wide range of parameters [SI. 

The approach taken in this paper implies that we do nor attempt a full micro- 
scopic simulation of the transport properties. We use the Boltzmann equation in 
one velocity and one spatial dimension, with a relaxation time representation for the 
collision integral. With this approach, we overestimate ballistic effects and focus in 
this extreme test case on the impact of ‘ballisticity’ on various low order moments [l]. 
Collision integrals can be treated more realistically with Monte Carlo simulations [2], 
which can accurately describe microscopic phase space transport phenomena. How- 
ever, the large number of (partially) adaptable and unknown parameters appearing 
in such calculations, seriously restricts a clear separation between the various physical 
effecIs included and their influence on the predictions of low order moments. The 
present study oversimplifies the collision processes and allows for a clear interpreta- 
tion of the effects observed in the predicted moments in terms of the appearence and 
extent of ballistic effects. Specific trends in the properties can be studied in a more 
flexible way than possible with more refined Monte Carlo simulations. A direct, nu- 
merically exact, evaluation of the full distribution function is obtained; no additional 
approximations are introduced. Hence, it furnishes a genuine testing ground for ap- 
proximating schemes which should have the potential to be both adaptable to more 
complex geometries and to give accurate predictions over a wide range of parameters, 
maintaining a transparent physical content The failure of low order moment models 
to represent the relevant aspects of ultra-small devires calls for the construction of 
such alternative approximating descriptions. It is still an open matter in what way 
new (simple) approximating schemes should be realized. 

In section 2 we present the Boltzmann equation and give an overview of the 
numerical approach. Section 3 is devoted to a discussion of simulation results obtained 
for the distribution function and low order moments, concentrating on the influence 
of the relaxation time and the geometry of the model diode. Finally, in section 4 we 
compare these predictions with those generated with simple approximate low order 
moment models and summarize our findings. 

2. Boltzmann equation approach 

We introduce the spatially inhomogeneous Boltzmann equation. The hierarchy of 
corresponding moment equations approximating this Boltzmann equation will be pre- 
sented and closing relations indicated. Then we briefly describe the numerical proce- 
dure adopted to evaluate this model. 

The classical description of electron transport through solids Is based on the 
interplay between the Boltzmann equation and Poisson’s equation. The Boltzmann 
equation governs the distribution function f ( r , v )  and, in one spatial- and velocity 
dimension, it can be expressed as [l] 
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where we adopt the parabolic band approximation and assume a relaxation time rep- 
resentation (with rate 7) for the collision term and f ,  represents the local equilibrium 
distribution function. Hence, in (2.1) electrons are driven out of (local) equilibrium 
under the action of the electric field (E) present in the device and upon scattering 
are sent baclJthermalize with rate 7 to a state of local equilibrium, corresponding to 
fo. We concentrate on electrons only, which is an adequate assumption for n+nn+- 
diodes in which transport by holes can be neglected. We use scaled variables, i.e. 
position r and velocity z1 are measured in units r0 (the Debye length) and vo (the 
thermal velocity) respectively where 

with the understanding that kB is Boltzmann's constant, To the lattice temperature, 
E the permittivity, e the unit of charge, m' the effective mass and MEt a reference 
particle density in the system. Both f and fo are in units Mref/v0. This equation 
represents the balance between local flow of probability in phase space of charged 
particles in an associated electric field and transport of probability due to scattering 
processes. The electric field E is measured in units Eo ( m ' v i ) / ( e r o ) .  It is 
determined by Poisson's equation: 

d,,'P(r) = M o ( r )  - C(T) E =  -dVQ (2.3) 

where C(T) describes the doping profile of the device and MO the electron density, in 
units Mmt. Throughout we adopt the notation MO (instead of e.g. n or p as elsewhere 
in literature) for the (scaled) electron density in order to make the connection with 
higher order moments of f ,  to be introduced momentarily, more transparent The 
model n+nn+-diode is represcnted by the following doping profile: 

(2.4) 

in which C+ is the doping concentration in the nt-regions, C- the (minority) doping 
concentration in the n-region, 1 the length of the total structure and d E d, - d, the 
width of the n-region. '&'pically C- << C+ and combination with the abruptness of 
the doping profile implies large electric fields and rapid exponential variations in the 
electron density in regions close to the doping step.  

A similar model was first introduced by Baranger and Wilkins. Several basic 
assumptions are implied by the above formulation and we refer the reader to [1,9] 
for a detailed discussion. We stress that the spatially inhomogeneous Boltzmann 
equation is adopted as a calculational model overestimating ballistic effects. In this 
way we concentrate on a Worst case' model situation to clarify the influence of 
ballistic transport on low order moments. Moreover, the situations giving rise to 
ballistic effects can be monitored. The simplicity of this approach implies greater 
flexibility in investigating specific trends as a function of parameters. Furthermore, 
rapid local variations caused by the abrupt doping profile lead to serious numerical 
stability problems which seem intractable with more realistic scattering terms if one 
maintains a direct evaluation of the equation rather than a Monte Carlo simulation 
approach. 
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In device simulations one usually concentrates on low order velocity moments of 
the distribution function; the mth moment M ,  is defined as M ,  (U"), m = 
0,1,2,. . . . 'RI clarify these moments; MO is proportional to the electron density, 
M ,  to the current density, M ,  to the kinetic energy density, M3 to the current in 
the kinetic energy density, etc. Moreover, combinations of lower order moments are 
readily interpreted; the ratio of M ,  and MO is proportional to the drift velocity, a 
combination of MO,. . . , M2 can be related to the electron temperature etc. The set 
of moments {hfm(r)] obeys [q 

d , M m + l + m E M , _ l = - - { M , - M , , , }  m = 0 , 1 , 2  ,... 

which is readily derived from (21) by multiplying both sides with vm and (partial) 
integration over all U .  The local equilibrium distribution function appearing in. (21) 
can be expressed as 

(2.5) 
1 
7- 

fo(r ,  U )  - 

This implies that the reference moments {Mm,o} are given by 
m 

j = 1  

and MZm+, ,, = 0. The mth moment is governed in part by the spatial derivative of 
the (m + 1)th moment. Hence, a closing relation must be postulated expressing a 
higher order moment in terms of lower order moments. With such a closing relation 
the system of equations (2.5) is finite and can be treated numerically yielding approxi- 
mate predictions for the moments. The accuracy of such an approach heavily depends 
on the truncation order and the exact closing relation used. Such closing relations are 
frequently generated with some assumed form for the distribution function as basis 
[4,5,7]. There is no U priori justification for the use of a particular choice other than 
related (semi) empirical considerations. The justification for a specific choice is mostly 
given afterwards and related to the accuracy of a particular prediction in relation to 
experimenfs or more refined model calculations. As such, the strict physical prcdic- 
tive power is limited The numerical Boltzmann simulation results will be compared 
with a two- (i.e. driftdiffusion) and a four-moment model. The closing relations are 
obtained from an expansion of the distribution function around a pure Maxwellian 
distribution function in Hermite polynomials [4]. In particular, the 'drift-diffusion' 
(i.e. two moments) closing relation used is hl, = MO, Le. assuming equilibrium be- 
tween electrons and phonons by taking the electron temperature equal to the lattice 
temperature, and the four-moment closing relation is taken as M4 = 6 M ,  - 3M0.  A 
more detailed discusion may be found in e.g. [5,q 

In order to complete the above model, we need to specify boundary conditions. 
Throughout, we consider n+nn+-diodes with doping banks (Le. the n+-regions) wide 
enough such that at T = 0 and r = 1 the spatially homogeneous situation applies to 
close approximation. In that case the electron density at the boundaries equals the 
doping conaentration in the n+-region and the Boltzmann equation reduces to 

1 
- -%aufb(v) = ---ff 7- b(') - f 0 , 6 ( U ) j  (2.8) 
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where the subscript b denotes that we consider the boundary. Since the total charge 
distribution is considered neutral, the electric field at the boundaries is equal, and 
the above holds at both boundaries. One readily solves for fb and obtains: 

(2.9) 
-6 exp (6{: - v})erfc (%) 6 < 0  

f b ( v )  = 

in which 6 = -1/(7Eb). Special care must be paid to 161 much larger and much 
smaller than 1, in which case asymptotic expansions should be used Notice that fb 
can be evaluated if Eb is known In addition, the boundary conditions for V are 
taken as V(0)  = 0 and V(1)  = V in which V denotes the (scaled) applied voltage. 

We next briefly describe the self-consistent numerical approach used to evaluate 
the above model. The central method for solving the Boltzmann part is based on the 
method of characteristics in which we assume the electric field E to be known for the 
moment. As a consequence of this, the family of characteristics, given implicitly by 
( v ’ / Z )  - Q ( P )  = a, where a is a constant, is also assumed known. If f is desired in 
a point ( P, v )  one first reconstructs the specific member of this characteristics family, 
by evaluation of the corresponding a, on which this point is located. Then one 
integrates the Boltzmann equation along this characteristic, starting at the (‘upstream’) 
boundary, i.e. at P = 0 if v > 0 and at T = I if < 0. The value of f at 
this boundary is given by (29) evaluated at the boundary point corresponding to 
the specific characteristic selected. If that characteristic does not connect to any 
boundary point one determines f(r, v )  through repeated integration along the closed 
characteristic (which in such a case lies completely within the region in which the 
calculation is performed) and requires the distribution function to be single valued. In 
this way one may determine f, given an electric field E, at any point (v ,  w). Updating 
the electron density and solving Poisson’s equation for this new density completes 
one step in the full iteration. Repeated application of the above yields a (slowly) 
converging iteration process which is repeated until convergence is obtained. The 
iteration is stopped if the maximal relative error in and MO is smaller than some 
tolerance. A detailed description of the above scheme will be presented elsewhere 
[8]. Here, we concentrate on the results obtained with the above, direct integration 
algorithm and turn to the predictions for the distribution function and low order 
moments in the next section. 

3. Ballistic and non-ballistic predictions lor an u+nn+-diode 

In this section we present Boltzmann predictions for low order moments as depending 
on the relaxation time (7) and the width of the n-region ( d )  for various applied 
voltages. Both non-ballistic (‘small’ T and/or ‘large’ d )  and ballistic situations will be 
considered. First, however, we present simulation results for the distribution function 
itself, showing the appearence of sharp high velocity peaks in the distribution function, 
next to a more familiar ‘bell’-shaped form at lower velocities as we enter the ballistic 
domain, e.g. through an increase in 7. 

We consider a G a h  based diode with m* = 0.069me (me being the electron rest 
mass), E? = 12.5, an n-width of 10-7-10-6 m and a total length I of 10-6-10-5 m. 
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Figure 1. Perspective plot of f(r,v)/Mo(r) with r = 5 x lo-'3 s, and n-width 
d = 0.4 x 1O-8 m. a total length I = 4.4 x lo-' m and applied voltages V = 0.1 V 
(a); V = 0 . 3  V (b) .  ?he displayed pan of p i t i o n  spacc is the low doping region 
beween r = dl (in the back) and r = d l  (in the front). 

Doping concentrations are taken as C+ = loz4 w3 and C- = 2 x loz1 m-3 (the 
reference. density M,, is k e d  to C+). The relaxation time will be in the range 10-13- 
lo-14 s, and the lattice temperature To = 300 K. For a more detailed description of 
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the choice of these parameter regions we refer to [1,9]. 
In figure 1 we show the distribution function at parameters corresponding to the 

predominantly ballistic regime showing the influence of an increased applied voltage. 
Only the segment corresponding to the n-region is shown. One clearly recognizes 
the (‘drifted’) Maxwellian shape (roughly speaking) of f at the doping interfaces, i.e. 
at r = d, and 1‘ = d,. Notice that r = d, corresponds to the ‘back part’ of the 
figure and r = d, to the ‘front part’. As the electrons enter the n-region they are 
first slowed down on the average, corresponding to a somewhat higher and sharper 
distribution function (i.e. ‘cooling’ to which we turn momentarily). The electrons 
move up a potential barrier related to the electrostatic potential, in the ‘first’ part 
of the n-region. After this initial step, the electrons get accellerated, which is clearly 
represented by the high velocity ballistic ‘ridge’ shown. As we enter further into the n- 
region, gradually more and more electrons get thermalized, i.e. scattered back to the 
local equilibrium state and at r = d, virtually all ballistic electrons have disappeared 
and we have returned to the situation at T = d, to close approximation. An increase 
in the applied voltage favours these effects. At V = 0.1 V the fraction of electrons 
moving ballistically is roughly the same as the amount of ‘lower’ velocicy electrons. 
However, at V = 0.3 V, the ballistic electrons heavily outweigh the ‘lower’ velocity 
electrons for certain values of r. In figure 2 we plotted the electrcstatic potential 
in which the electrons move, displaying the different regions of transport discussed 
above. The high built-in electric fields observed in this diode imply that far from 
equilibrium conditions are reached with great ease. So, small applied voltages cause 
quite large ballistic effects at appropriate parameter values. 

In order to obtain a quantitative overview, we plotted ‘cross-sections’ of f as a 
function of velocity at a number of points within the structure. As shown above, an 
increase in V favours ballistic effects, as does an increase in the relaxation time r. In 
figures 3-5 we show f at V = 0.25 at the r-values as indicated by ‘plusses’ in figure 2 
and for three different r values. A decrease in r corresponds to a (sharp) decrease in 
the amount of electrons moving ballistically within the n-region, at the same applied 
voltage. In the ballistic cases (figures 3 and 4) one observes a definite cooling effect, 
i.e. a much narrower distribution function as the electrons move up the potential 
barrier. Deeper within the n-region a sharp ballistic peak develops which disappears 
almost completely when approaching the second doping step. The fraction of ballistic 
electrons sharply decreases as r is decreased, and at r = 1 x s almost no 
ballistic effecs are noticed (cf. figure 5). A similar observation can be made with 
respect to variations in the width of the n-region, d. As d is decreased far enough 
(depending on T) ,  predominantly ballistic transport is observed in the n-region of 
the diode. There is a sharp ‘cross-over’ from non-ballistic to predominantly ballistic 
transport in this structure as a function of r and d. Roughly speaking, as ballistic 
electrons (with velocity on the order of d/r or higher) start to represent a non- 
neglegible fraction (% a few percent of more) of the total ensemble of electrons the 
dominant physical transport phenomena change rapidly from ‘diffusive’ to ‘ballistic’. 

The ‘cooling’ and ‘heating’ of the electrons in the n-region is shown in figure 6 in 
which we represent the effect of an applied voltage. The electron temperature ( Te) 
is defined as 

and is related to the ’width’ of the distribution. Both ‘cooling’ and ‘heating’ are 
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Feure 2. Plot of Y as a function of position. 
with paramelen a6 in figure 1. The full curve 
corresponds 10 V = 0.1 and the dashed curve U) 
V = 0.3. Also Shawn are the positions used to 
generate the distribution function f as in figures 3- 
5 (marked by ‘piusses’ and labelled 1.. .7 Cor l a m  
convenience). Ihe  n-region is situated between d l  
and di. 

t I 0 1  
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VO 

Figure3 .Plo tof  f ( r , u ) / M o ( r ) a l  V = O . 2 5 V  
and the Same paramelen as in figure 1. We show 
m u l l s  at r = 2 (labelled 1); r = 2.06875 (la- 
belled 2, here Y has its minimal value); r = 2.1 
(labelled 3); r = 2.2 (labelled 4); P = 2.3 (la. 
belled 5 )  ; r = 2.35 (labelled 6 )  and P = 2.4 (la- 
belled 7). All these positions are in units m. 

0.8 .. - ~ 

T 
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I 0.40 
f 

I 
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MO 
- 
MO 
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0.4 
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WO 

Figure 4. PI01 of f(r,u)/Mo(r) at V = 0.25 V 
and the Same parameters as in figure 1, but r = 
2.9 x lom1’ s. The curve labelling is the Same as 
in figure 3. 

-- 
YO 

Figure 5. Plot of f ( r , u ) / M o ( r )  at V = 0.25 V 
and the Same parameters a s  in figure 1, but r = 
1 x h. We show results at r = 2 (full 
curve); r = 2.06875 (dolled curve3 here * has ils  
minimal value); r = 2.1 (dashed curve); r = 2 .2  
(chain dolled curve); r = 2 .3  (long chain-dashed 
curve) and r = 2.35 (long dashed curve). All 
these cositions are in units m. 

clearly recognized, and an increase in the applied voltage increases these effects. The 
‘heating’ of the electrons is influenced to a greater extent than the ‘cooling’, which 
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is due to the fact that the potential barrier close to r = d, changes less than the 
potential difference between the doping steps. Finally, in figure 7 we show the kinetic 
energy density current, defined as Q = (m'vgMrefM3)/2, displaying variations in 
the relaxation time. 'TWO distinct peaks are recognized close to the doping interfaces, 
which become more pronounced as the relaxation time increases, i.e. if ballistic 
effects become more important. The upper two curves correspond (roughly speaking) 
to the ballistic regime, whereas the lower two correspond to the non-ballistic regime. 
The features of Q in these two regimes are quite different in the ballistic regime the 
peaks in Q are both higher and wider in comparison to the non-ballistic results. A 
study of the influence of d shows similar effects; a decrease in d implies situations 
further separated from local equilibrium. 

j - O" 

c' E e 
e 1500 

0 - 
1000 x 0.2 a 

500 

0- 0.0 
2.00 2.10 220 2.30 2.40 

I 

r ( x 1 O . W  - 
Figure 6. Plot of the electmn temperature (T,) as 
a function of posilion using lhe Same parameters 
as in figure 1, with r = 2.9 x s. Applied 
voltages used in this calculation arc V = 0.5 V 
(largest cooling and heatiog) and decreasing wilh 
steps Of 0.1 v 

Figure 7. PI01 of the kinetic e n e m  density cur- 
rent (9) as a function of position at V = 0.1 V 
showing the dependence on r with parameters as 
in figure 1. We used 7 = 5 x s (full cuwe); 
r = 2 . 9 ~  s 
(dashed curve) and .r = 5 x lo-" s (chain dotted 
cume). 

s (dotted curve); T = 1 x 

4. Comparison with low order moment models 

The hierarchy of moment equations needs to be closed by a relation expressing a 
high order moment in terms of lower order moments. The basis of such a closing 
relation is usually an assumption on the dominant form of the distribution function. 
The closing relations given in section 2 are obtained from an expansion of f around 
a Maxwellian distribution function. Improved expansions have been proposed corre- 
sponding to an expansion around 'drifted' and also 'drifted and heated' Maxwellians. 
In the first case the velocity is corrected with the drift velocity, and in the second 
case it iS also scaled with the root of the local electron temperature. Complicated, 
nonlinear closing relations are obtained in the latter cases. The predictions of all 
these models, at any low truncation order (< 4) agree quite well with each other and 
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hence we only compare to the moment models corresponding to expansion around 
a pure Maxwellian [4,7]. Apparently, such an extension of the expansion functions 
is not able to bridge the large differences obsemd between the assumed and the 
actual distribution function. The accuracy of the predictions obtained with the mo- 
ment models is correspondingly small, already in ‘mildly’ ballistic cases. We compare 
simulation results for low order moments as well as I-V characteristics and relate 
the failure of the moment models to the appearance of extra ballistic structure in the 
distribution function. The latter ‘tine’ structure in f can obviously not be covered 
with a Maxwellian type of expansion function. In addition, the homogeneous solution 
at the boundaries is also not exactly represented, which causes even moderate ballistic 
cases to be poorly predicted in some respects (e.g. the conductivity). 

?*, 
c 

T 
1017 E, 

5 

- 
T 

s 
5 0.2 a 

I .  
3 %  :. 

,’ I 

, I  

’. I ,  * *  
10‘6 

%. : ** . ,, ,’ ..__ .../ * 

i o i 5  , . , ... ,, , 0 .0  
2.00 2.10 2.20 2.30 2.40 1.6 1,s 2.0 2.2 2.4 2.6 B 

r 1xlWml - r(xla6ml _f 

Figure 8. The elcclmn density as a function of PO- Figure 9. The kinetic energy denstiy current (Q) 
sicion at r = 2.9 x sand V = 0.1 V (case as a function of position at V = 0.1 V and T = 
a); v = 0.5 V (case b). The Boltzmann m u l l s  1 x 5 (lower hvo curves); r = 2.9 x lo-’’ s 
are shown as full C U N ~ ,  the twomoments mul ls  (upper two curves). The Boltzmann results a n  
as dolled curves and the lourmoments rcsults as shown as lull lines and the fourmoments rcsults as 
dashed curves. dashed lines Paramelen as in figure 1. 

In figure 8 we plot the electron density as a function of position using 7 = 
2.9 x s and show the influence of an applied voltage. If V increases, both the 
WO- and four-moment models give less accurate predictions of the electron density, 
though this quantity does not depend very sensitively on the presence of ballistic 
electrons. Wc also studied the effects of changes in T and/or d. An increase in T 
andlor a decrease in d implies a decrease of the range of applied voltages in which 
the moment predictions give acceptable representations of the actual electron density. 
Since the electron density is contained in the right hand side of all odd order moment 
equations (cf. (2.5) and (2.7)). small errors in the predictions have an influence on 
all other moments. Hence, the accuracy with which the electron density needs to 
be represented should be quite high in order to have reasonable accuracy in the 
higher order moments. The influence of these errors is largest in the odd order 
moments. Turning to figure 9 we notice that the four-moment prediction (dashed 
lines) of the kinetic energy density current (Q) becomes unacceptable already at 
small applied voltages if T is large enough. We show results for Q at V = 0.1 V 
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15x10' t 
"; 
5 
s i O X l O +  . 

5.OX1O3 

8.00 0.05 0.10 0.15 0.20 
V - - r  

Fkum 10. Comparison of the I-V characteristics as predicted by the two- and four- 
momenu models with the corresponding Boltzmann results showing the influence of 
variations in the relaxation time r ,  keeping d fixed to 0.4 x IO-' m. The Boltzmann 
results are represented by the full CUN-. the two-moments resulu by the dotted c u m  
and the four-moments results by the dashed c u m .  In the calculations r was varied 
beween r = 5 x lo-" 6 (labelled a); 1 x s 
(labelled c) and 5 x 

6 (labelled b); 2.9 x 
s (labelled d). The other parameters are as in figure 1. 

and 7 = 1 x s ('mildly ballistic'). In the 
'non-ballistic' case the prediction for Q roughly corresponds to the Boltzmann result, 
though the predicted peaks in Q are slightly too large and too sharp. In the ballistic 
case however, both the values as well as the global shape are predicted with large 
error. 

A very strong influence of ballistic transport is seen in the I-V characteristics as 
predicted by the moment models in comparison with the Boltzmann results. In figure 
10 we show such I-V characteristics for a wide range of 7 values at d = 0.4 x lo-' 
m. The applied voltage range is only moderate and the I-V curves shown exhibit 
all nearly linear dependence of I on V as reported elsewhere in literature, e.g. [l]. 
Only for very small 7 values the predictions are roughly coincident and in this regime 
the improvements coming from the use of higher order moment models is virtually 
negligible. A decrease in d also results in less accurate predictions of the current 
since ballistic effects become more important. The use of higher order moment 
models provides a slight extension of the parameter region in which the predicted 
currents are still reasonably accurate. However, it is obvious that the predominantly 
ballistic regime can not be reached with any low order moment model [6,7]. Only 
the introduction of a (much) more complicated reference function, around which the 
expansions take place, seems to open the possibility to actually describe the ballistic 
regime properly, within a moment approach. It is not clear what guiding principles 
should be used in the construction of such a reference function and it is questionable 
whether such an approach would be applicable at all to more complex geometries. 

s ('non-ballistic'), T = 2.9 x 
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